Cloning, Overexpression and in vitro Antifungal Activity of Zea Mays PR10 Protein

نویسندگان

  • Niloofar Zandvakili
  • Mohammadreza Zamani
  • Mostafa Motallebi
  • Zahra Moghaddassi Jahromi
چکیده

BACKGROUND Plants have various defense mechanisms such as production of antimicrobial peptides, particularly pathogenesis related proteins (PR proteins). PR10 family is an essential member of this group, with antifungal, antibacterial and antiviral activities. OBJECTIVE The goal of this study is to assess the antifungal activity of maize PR10 against some of fungal phytopathogens. MATERIALS AND METHODS Zea mays PR10 gene (TN-05-147) was cloned from genomic DNA and cDNA and overexpressed in Escherichia coli. The existence of a 77- bp intron and two exons in PR10 was confi rmed by comparing the genomic and cDNA sequences. The PR10 cDNA was cloned in pET26b (+) expression vector and transformed into E. coli strain Rosetta DE3 in order to express PR10 recombinant protein. Expression of the recombinant protein was checked by western analysis. Recombinant PR10 appeared as insoluble inclusion bodies and thus solubilized and refolded. PR10 was isolated using Ni- NTA column. The activity of the refolded protein was confi rmed by DNA degradation test. The antifungal activity of PR10 was assessed using radial diff usion, disc diff usion and spore germination. The hemolytic assay was performed to investigate the biosafety of recombinant PR10. RESULTS Recombinant maize PR10 exerted broad spectrum antifungal activity against Botrytis cinerea, Sclerotinia sclerotiorum, Fusarium oxysporum, Verticillium dahlia and Alternaria solani. Hemolysis biosafety test indicated that the protein is not poisonous to mammalian cells. CONCLUSIONS Maize PR10 has the potential to be used as the antifungal agent against diff erent fungal phytopathogens. Therefore, this protein can be used in order to produce antifungal agents and fungi resistance transgenic plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning, Overexpression and in vitro Antifungal Activity of Zea Mays PR10 Protein

Background: Plants have various defense mechanisms such as production of antimicrobial peptides, particularly pathogenesis related proteins (PR proteins). PR10 family is an essential member of this group, with antifungal, antibacterial and antiviral activities.Objective: The goal of this study is to assess the antifungal activity of maize PR10 against some of fungal phytopathogens.M...

متن کامل

Antiplasmodial activity and cytotoxicity of ethanol extract of Zea mays root

Objective:Zea mays root decoction that has been traditionally used for the treatment of malaria by various tribes in Nigeria, was evaluated for antimalarial potential against malaria parasites using in vivo and in vitro models. Materials and Methods: The root extract of Zea mays was investigated for antimalarial activity against Plasmodium berghei in mice using rodent malaria models; suppressiv...

متن کامل

PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production.

Maize (Zea mays L.) is a major crop susceptible to Aspergillus flavus infection and subsequent contamination with aflatoxins, the potent carcinogenic secondary metabolites of the fungus. Protein profiles of maize genotypes resistant and susceptible to A. flavus infection and/or aflatoxin contamination have been compared, and several resistance-associated proteins have been found, including a pa...

متن کامل

Responses of growth and antioxidative enzymes to various concentrations of nickel in Zea mays leaves and roots. Fatemeh Ghasemi*, Reza Heidari, Rashid Jameii and Latifeh Purakbar

To assess nickel-induced toxicity in plants, Zea mays seeds were germinated and cultured on nutrient solution with nickel concentrations of 50-200 μM for a period of two weeks. Observed biological makers included biomass, soluble and total protein contents, and the activities of guaiacol peroxidase (GPX), ascorbate peroxidase (APX), catalase (CAT), and phenylalanine ammonia-lyase (PAL) in the l...

متن کامل

In silico Analysis and Expression of Osmotin-EAAAK-LTP Fused Protein

Antifungal agents are causing different problems in the agriculture industry. Plants are using various defense mechanisms for resistance against fungal pathogens. Some examples of these mechanisms are making physical barriers, producing chemical components and pathogenesis-related proteins such as lipid transfer protein (LTP) and Osmotin which can inhibit the growth of fungi at micro-molar conc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017